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The results of numerical calculations of the velocity profiles and the viscosities of Boolean and
Boltzmann cellular automata for circular Couette flows in two dimensions are presented. The necessary
forcing rules to induce such flows are constructed. It is shown that the Boltzmann cellular automata
offer a more natural way of simulating flows around curved boundaries. A comparison to the results for
Poiseuille and planar Couette flows is made. The Boltzmann automata are used to study chaotic mixing
in time-periodic flows between two eccentric circles. The Poincaré sections obtained are similar to those

found in experiments.
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I. INTRODUCTION

Lattice-gas models have been the subject of much
research [1,2]. These models are cellular automata con-
sisting of fictitious particles which hop synchronously be-
tween sites of a regular lattice and scatter on the sites of
the lattice. The rules of behavior of the particles depend
on the solutions of which partial differential equation the
automaton is supposed to imitate. For applications in
hydrodynamics, the collision laws are chosen to satisfy
the microscopic conservation laws of mass and momen-
tum. Frisch, Hasslacher, and Pomeau [3] (FHP) have
shown that such two-dimensional (2D) cellular automata
simulate the behavior characteristic of the 2D Navier-
Stokes equations for sufficiently large sizes of cells over
which local averages are calculated. Similar methods to
study 3D systems have been also developed [1,4].

The cellular automata have been used to study a
variety of systems such as two-fluid systems with inter-
faces [5], viscous fingers [6], systems undergoing the
liquid-gas transition [7], suspensions [8], polymers [9],
and phenomena of dispersion [10] and diffusion [11].

The cellular automata used in these problems are usu-
ally Boolean: discrete velocity states at a site are either
occupied or not, as described in Sec. II. Recently auto-
mata defined in terms of continuous degrees of freedom
have been introduced [12—14]. Their dynamics relates to
flows of probabilities and not of actual microscopic
configurations. The disadvantage of these so-called
Boltzmann automata is that the floating-point algebra in-
volved leads to round-off errors but, on the other hand,
no coarse graining is needed and the noise and equilibra-
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tion times are reduced significantly. In this paper we
demonstrate that the Boltzmann automata offer further
advantages in studies of flows in confined geometries such
as found in porous media where the boundary walls are
curved.

In this paper, as a case in point, we discuss a circular
Couette flow [15] which is induced by a shear provided
by moving walls. The flow is considered to take place be-
tween two independently rotating coaxial cylinders,
which in the two-dimensional geometry used here are
represented by two concentric circles. In order to impart
momentum at the walls velocity states of the cellular au-
tomata particles have to undergo changes described by
certain forcing rules. In Sec. III we construct such forc-
ing rules for the Boolean automata, in Sec. IV we use
them to determine velocity profiles and then in Sec. V to
calculate viscosity of the system. Comparisons with the
planar Couette and the Poiseuille flows are also made
here. We find, however, that these rules are quite
cumbersome and their generalization would become rath-
er prohibitive in more complicated curved geometries.
The forcing rules for the Boltzmann automaton, on the
other hand, are very simple and are used in Sec. VI to
study chaotic advection in time-periodic circular Couette
flows.

The time-periodic flows at low Reynolds numbers re-
sult in folding and stretching of a passive tracer leading
to a complicated morphology of its distribution. The
mixing is chaotic and nonuniform [16-21]. The circular
geometry considered in this paper corresponds to the ex-
perimentally [22,23] and theoretically [23] studied journal
bearing flows. Following our own cellular automata
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studies of chaotic mixing in a cavity flow [24] we focus on
differences in the mixing morphology in two different
realizations of periodic flows: when either one or two
walls move at a time. We find that the morphology are
reminiscent of those found for the cavity flow mixing. It
should be pointed out that the Boltzmann automata
define local values of the velocity field without any coarse
graining and are thus, also for this reason, ideally suited
to studies of chaotic mixing.

II. MODEL

Since the square lattices introduce spurious symmetries
[1,3] in the evolution of the fictitious particles, we consid-
er cellular automata on the triangular lattice. All parti-
cles have unit mass and are assumed to be either at rest
or to move with a unit velocity in one of the six possible
directions of the lattice. They are also subject to an ex-
clusion principle—at most only one particle is allowed in
any given state (i.e., at a given site having a particular ve-
locity). There are then seven allowed states at each site
and the corresponding velocities are

C,=0, (1)

,sin

%(a~1)

= [cos

In the Boolean case the state of the system is determined
by the occupation numbers of the velocity states at all
sites. In the Boltzmann approach, on the other hand, the
occupation numbers are replaced by corresponding mean
population values. Furthermore, one considers evolution
not of individual particles but of the whole statistical en-
semble of possible trajectories by performing exact
enumeration of probabilities. The system is then defined
in terms of continuous degrees of freedom which are up-
dated at discrete time steps.

In the starting configuration, we assign randomly on an
average p, particles to each site, or equivalently p parti-
cles per state. The relationship between these two param-
eters is p, =(6+n)p, where n denotes the number of al-
lowed rest particles at a site.

The lattice gas updating rules consist of two steps:
propagation and collision. It is assumed that scattering
events take place every time step.

The viscosity of the system depends on what collision
rules are allowed in the model. In the Boolean case we
use the deterministic collision rules of model FHP II,
with ny=1, described in Ref. [1]. These rules take into
account certain classes of binary, triple, and ternary col-
lisions and they may generate or remove particles at rest.
The identity of the particle is not preserved in the col-
lisions.

For the Boltzmann automata we can easily modify the
FHP II collision rules allow for many particles at rest at
each site. If n, is chosen to satisfy

ny+6= 121__49_,

. 3)

then the Galilean invariance is introduced into the sys-
tem [13]. In the studies of chaotic mixing p=4 and
ny=18, which satisfies Eq. (3). The Galilean invariance
is important in two-fluid flows but in one-fluid flows other
choices of n, for a given p, would also be possible since
the velocity field can be rescaled easily.

III. FORCING RULES

Even though our main interest is in the circular flows it
is appropriate methodologically to first consider planar
flows. We start by identifying the forcing rules which are
essential to impose flows in the system.

A. Poiseuille flow

In the case of Poiseuille flow along the y direction, the
forcing takes place in the bulk of the system. We now
focus on the Boolean automata. Following Ref. [25], we
force the flow by adding momentum in the flow direction
at a constant rate. A given site allows for acceptance of
an external momentum if it has a particle in a state a=6
(i.e., in the state with the velocity C,) and no particle in a
state =2, or if it has a particle in a state a=5 and no
particle in a state a=3. A momentum of V'3 is added to
the system if this transfer between the two states takes
place. Note that for our flow geometry there are no
states with velocities which are parallel to the net flow
direction, so there are no single-particle forcing mecha-
nisms allowed.

After each time step, we randomly select a lattice site
and, if possible, apply the forcing rule. The forcing pro-
cess is repeated until the desired amount of momentum
has been added. We supplied the system with an average
momentum in each time step F equal to 0.76. This
effective bulk force, which mimics the pressure gradient,
is applied uniformly across the system.

B. Planar Couette flow

In the case of planar Couette flow, there is no bulk
forcing and the simulation is more subtle: in addition to
the no-slip boundary conditions in the x direction we
check whether an extra momentum can be added on im-
pact with the walls. Thus, if a particle in a state a =3 im-
pacts on the left-hand side wall (x=0) and there is no
particle in a state =35 on this site, then the wall imparts
V'3 of momentum by causing the state =2 to be occu-
pied. A similar wall forcing takes place on the right-
hand side wall. The wall forcing takes place with a prob-
ability p, whenever a possibility for the momentum
transfer exists. We studied p=0.5 and 1.0. Our results
will be shown only for p=1 since smaller p’s require
much longer runs to get a reasonable signal to noise ratio.

C. Circular Couette flow

The microscopic forcing rules are illustrated in Fig. 1.
The forcing takes place on a moving circle by adding
momentum in the direction tangential to the wall. In
Fig. 1 we present all forcing mechanisms, which are
operative on the outer circle when it is moving anticlock-
wise.
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There are three main differences from the forcing rules
described in Secs. IIT A and III B.

(i) The amount of momentum added, when pushing, is
site dependent.

(ii) The radial and tangential components of the added
momentum also depend on the position on the circle.

(iii) The forcing rules may depend not only on the state
of the sites under consideration, but also on the state of
the neighboring sites.

In the vicinity of the wall there are sites in which only
one particle can be directed towards the wall, there are
also sites in which up to two, three, or four particles may
point towards it. However, it is only when one or two
particles are directed towards the moving wall can one
add tangential momentum to the system.

Sites in which up to four particles may point towards
the wall exist only for a discrete sets of radii R when the
centers of the circles reside on a site of the lattice
(nV3<R <V3n2+1,n=12,...). We chose the radii
of the circles so that there are no such sites in the system.

Al |l A |

FIG. 1. The microscopic forcing rules for the circular
Couette flow as described by the Boolean automata. The rules
are operative at the outer circle when it is moving counterclock-
wise. In the first column are all possible input states with one or
two particles impacting on the wall. It is assumed that there are
no more particles pointing towards the circle. The possible out-
put states after the impact are shown in the second and third
columns. The second column shows the implementation of the
no-slip boundary condition. The third column describes the
outcome when a relevant forcing rule is applied. The state with
a dashed arrow should not be occupied before forcing, if the
forcing is to be allowed. The forcing rule is implemented with
probability p and the bounce-back condition with probability
1—p. The situation marked by the asterisk is explained in the
text.

In the case of a site in which up to three particles may
impact on the wall, and all of the three states are occu-
pied, one can implement only the no-slip boundary condi-
tions.

In the first column of Fig. 1 we show the input states
with one or two particles impacting on a moving circle.
The possible output states after the impact are shown in
the second and third columns. The second column shows
implementation of the no-slip boundary condition. The
third column describes the outcome when a relevant forc-
ing rule is applied (the state with a dashed arrow should
not be occupied before forcing, if the forcing is to be al-
lowed).

Consider, as an example, the first row of the plot. In
the input state there is one particle with velocity C, and
maybe particles with other velocity as well. There are
two possible output states after the collision with the
wall. One of them is the realization of the no-slip bound-
ary condition (particle with velocity C, acquires velocity
Cs). The other possibility is the implementation of an ap-
propriate forcing rule, which in this case causes particle
in the state @ =2 to be pushed to the state a=3. This
forcing rule can be applied only if the a =3 state on the
neighboring site (the corresponding velocity is shown in
dashed line) is unoccupied.

The plots in the sixth row show that in this
configuration (marked by the asterisk), there is no new
forcing mechanism allowed (p=0) because the bounce-
back boundary condition automatically imparts a tangen-
tial momentum. In general, we permit a particle in a
given state to be pushed only to the state nearest the
moving circle boundary, which is consistent with the cir-
cular flow.

Similar forcing rules are applied to the inner moving
circle and to the other rotation direction. The forcing
process takes place with a probability p. It is expected
that with such forcing rules the added radial momentum
averages out to zero and the tangential momentum in-
duces a circular flow.

We carried out simulations for various values of the
forcing probability p and found the relation between the
velocity vy on the moving wall and the pushing rate. The
relation is approximately linear as demonstrated in Fig.
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FIG. 2. Tangential velocity v, vs the forcing probability p for
the circular Couette flow. The site density is p, =2.1 and the
automaton is Boolean.
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2. In order to overcome the noise we choose to do simu-
lations with p=1, but even that is not sufficient at higher
densities when few channels for pushing are available.
For smaller densities, large p means large Reynolds num-
bers, which may lead to a turbulent flow.

D. Forcing rules for the Boltzmann automata

The implementation of forcing rules at the moving
walls consists simply of adding specified contributions to
the occupation numbers at the wall sites which would
make the boundary flow parallel to the wall. The sizes of
the local additive contributions are determined by the
magnitude of the wall velocity. Note that in this ap-
proach there is no need to monitor instantaneous micro-
scopic conditions at the wall sites.

IV. VELOCITY PROFILES
IN THE BOOLEAN AUTOMATA

In the case of Poiseuille and planar Couette flows we
take the system to consist of L X L sites with L=32. The
linear sizes of the system are then L in the x direction
and LV'3/2 in the direction of the net flow y. For both
flows, the boundary conditions in the y direction are
chosen to be periodic.

In the case of Poiseuille flow the no-slip boundary con-
ditions are implemented on the wall sites in the x direc-
tion by inverting velocities which would carry a particle
out of the system (bounce-back boundary condition). We
evolve the system for a million (two million for the small-
est density) iterations, the first 200 000 (half a million for
the lowest density) of which are excluded from the
averaging process. The averaging is performed along the
lattice lines which are parallel to the walls.

In a 2D Poiseuille flow between two walls there is a
mass transport due to a pressure gradient between the
ends of the channel. The velocity profile is parabolic and
in the continuum limit given by [26]

B2 ?
4

h

2

1 ap
2n dy

, (4)

Uy

where 7 denotes viscosity and 4 is the distance between
the walls located at x=0 and h. The flow is assumed to
take place along the y direction and no-slip boundary
conditions on the walls are adopted. Kadanoff,
McNamara, and Zanetti have demonstrated that lattice-
gas automata with suitably chosen bulk forcing rules that
push the lattice gas can indeed lead to parabolic profiles
and thus allow for the determination of viscosity: a
Poiseuille viscometer was constructed.

In the planar Couette flow the velocity profile is linear.
In order to determine the viscosity one has to use the
defining equation

d
o, =y (5)

» 1 dx
and calculate the stress tensor o,, directly. To this end
we need to determine momentum transfer across planes
parallel to the walls. In typical numerical calculations
the stress tensor is a quantity which is much more noisy

than the velocity profiles and its use to calculate viscosity
is recommended only under special circumstances such as
found in planar Couette flow.

Our studies were carried out for three site densities p;:
1.1, 2.1, and 3.1. As a rule, we found that the smaller the
ps the larger the noise. The parabolic and linear flow pat-
terns are found to be very well reproduced by the lattice-
gas model for the Poiseuille and planar Couette flows, re-
spectively.

We now turn to the discussion of the circular Couette
flows. Similar to the planar Couette flow, there is no
overall pressure gradient here and the forcing of the flow
takes place not in the bulk but at the walls. In that type
of flow the viscosity can be found by determination of the
torque (M) acting on the moving circle, which is defined
by the equation

27
M=f0 o,ordo (6)

where 0 ,,=nr[0(u,y/r)/0r] and r and 6 are the spherical
polar coordinates. The viscosity can be then calculated
by determining the torque. This should agree with the
viscosity obtained either from the velocity profile in the
Poiseuille flow or from the stress tensor calculation in
any type of flow.

The basic 2D low Reynolds number flow state in the
circular Couette case is the one in which the radial com-
ponent of the velocity is zero and the azimuthal com-
ponent v, is stationary. The distribution of the azimu-
thal velocity across the annulus is determined by the bal-
ance of viscous stresses whereas the pressure distribution
is determined by the balance between a radial pressure
gradient and the centrifugal force associated with the cir-
cular motion. The velocity v, depends only on the radial
distance r from the axis of symmetry and is given by
[15,27]

vo= Ar -!—E . (7
r
A and B are constants determined by
Q,R3—Q,R? R3R}
A== BE— )= s, ®
R3—Rj R5—Rj

where R |,R, are the radii and €,,{), are the angular ve-
locities of the inner and outer circle, respectively.

The simulations were carried for three cases: the inner
circle rotates, but the outer stays at rest; the outer ro-
tates, but the inner stays at rest, and finally both circles
rotate, both in the opposite directions. The boundary
conditions on the wall at rest are of the no-slip kind
whereas on the moving wall forcing rules are implement-
ed as described in Sec. III C. The radii of the smaller and
larger cylinders are equal to 30 and 60 lattice constants,
respectively. There are of order 10000 sites between the
two circles. There are 414 and 210 sites on the outer and
inner walls, respectively.

Some of the flow fields are plotted in Fig. 3. Figures
3(a) and 3(c) were obtained by the Boolean automaton
and the maximal forcing probability p=1 was used. Fig-
ures 3(b) and 3(d) were obtained by the Boltzmann au-
tomaton where the tangential addition to the occupation-
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FIG. 3. Flow fields for the circular Couette flow: in the top
two figures the inner circle stays at rest and the outer rotates,
and in the two bottom figures both circles rotate in opposite
directions as indicated by the big arrows. (a) and (c) were ob-
tained by the Boolean automaton (p; =2.1) whereas (b) and (d)
by the Boltzmann one (p, =8). (b) and (d) show local velocities
whereas (a) and (c) show coarse-grained velocities (average over
5X5 squares). The “octagonal symmetry” seen in (a) and (c) is
just an optical illusion emphasized by the small system size
combined with the coarse graining.

al probability of the velocity states was chosen to be equal
to 0.1. In the top two figures the inner circle stays at rest
and the outer rotates. In Fig. 3(a) the velocity at the
moving wall is equal to 0.34 whereas in Fig. 3(b) it is
equal to 0.11 [velocity arrows in Figs. 3(b) and 3(d) are
magnified by a factor of 3 to be better seen]. In both
cases this corresponds to the maximal pushing rates
available (in the Boltzmann case the pushing is limited in
some states by the occupational probabilities not becom-
ing negative). In the bottom two figures both circles ro-
tate with the same linear velocities as in the correspond-
ing top figures, but in opposite directions. In the Boolean
case, especially when both circles are moving, one can see
a vortexlike pattern. This is an artifact of the pushing
processes being related to the directions available on the
triangular lattice. On the other hand, smooth circular
velocity fields are observed in the Boltzmann case.

Even though the velocity field obtained by the Boolean
automaton is inferior to the one obtained by the
Boltzmann automaton, its properties are still quite
reasonable, as we shall see in the following. We focus on
the velocity field for circular Couette flow in which the
inner circle stays at rest and the outer one rotates coun-
terclockwise.

The velocity profiles versus (r —R;)/(R,—R,) are
shown in Fig. 4 for three site densities p,=1.1, 2.1, and
3.1. Figure 4(a) demonstrates that the radial velocity v,
indeed averages to a value which is close to zero. The
root mean square v, is typically less than 0.01. Figure
4(b) shows the profile of the transverse velocity vy. The
data points represent values found in the simulations and
the lines represent profiles given by Eq. (7), where 4 and
B were calculated from the numerically found 2, at the
outer wall. One can see that the best agreement is found
for p,=2.1. There are at least three sources of the devia-
tions. The first is the possible formation of the Knudsen
layer on the wall. The second is the noise, which gen-
erates nonzero velocity on the inner resting circle. The
lines on Fig. 4(b) were drawn assuming that Q,=0. The
averaging is performed along coaxial rings of the width of
(R,—R)/7 (smaller sizes averaging radial bins yielded
results, which were too noisy). Finally, one may not be in
the low Reynolds number regime. We estimate the Rey-
nolds number to be 45, 27, and 13 for p, equal to 1.1, 2.1,
and 3.1. respectively.

0.02
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> . v
\4 8 v
0.00 —v 5 v s -
v o
9
n
v 1 i’
001550 0.2 0.4 0.6 0.8 1.0
(r-R1)/(R2-Ry)
0.8
(b)
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FIG. 4. The velocity profile vs (r —R)/(R,—R,) for the
circular Couette flow in the Boolean automaton. (a) The radial
velocity v,; the line represents a state with a vanishing v,. (b)
The transverse velocity vgy; the data points correspond to nu-
merically calculated values and the lines represent profiles given
by Eq. (7). Triangles denote the site density p,=1.1, squares
ps=2.1, and circles p, =3.1.
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V. VISCOSITY

A. Boolean automata

The viscosity may be determined in several ways. For
both the Poiseuille and planar Couette flows, it may be
obtained by dividing the stress tensor by the velocity gra-
dient. This may be done either locally or by fitting the
flow profiles and the stress tensor to expected functional
forms. In addition, for the Poiseuille flow case, the
viscosity may be determined from the velocity profile, by
using Eq. (4). The stress tensor is calculated by consider-
ing lines parallel to the flow. We determined the y com-
ponent of the momentum flow from the left end from the
right of the plane, similar to the procedure described by
Hénon [28]. The quantity is then divided by the length
(LV'3/2) of the channel. The velocity gradient was cal-
culated by fitting the velocity profile to the expected func-
tional form and taking a derivative.

In the case of Poiseuille flow we fit the velocity profile
to a parabola, Eq. (4), assuming a velocity of zero at the
walls (even though it is never exactly zero there). The
maximum velocity per particle v_,, is found for
x =h/2=(L —1)/2. The pressure gradient in Eq. (4) is
replaced by a quantity related to the bulk force

dp _ PaF

~ 9
dy p,L(L—1) ©)

where p ,=p,2/V 3 is the particle density per unit area.
Thus the kinematic viscosity v=1/p 4 is given in terms
of v, by

max

F

8v maxps

(L —1)2
L(L—1)

2

(10

y=

In the case of the Poiseuille flow the stress tensor is
found to be linear overall. The slope varies with p; in a
weak manner. For the planar Couette flow the stress ten-
sor is a constant, but a million time steps were still not
sufficient to suppress the noise. The values of the stress
tensor, however, are quite reasonable, as seen by the re-
sults for the viscosity summarized in Table 1.

Consider now the circular Couette flow. A sensible
way to calculate viscosity, in this case, is to determine the
torque acting on the wall. From Eq. (5) one obtains [15]

vy /r)

M =27r? o

nr

‘r=R2=41rnB , (11)

where B is defined in Eq. (8). The torque should be equal
to an average force (F) acting on the unit length of the
outer circle, multiplied by the radius of this circle. The
kinematic viscosity, calculated from the torque acting on
the outer moving container, is thus given by

- v3 FR,
87 pB

(12)

The average force F is calculated in the following way.
We first sum the tangential momentum transfers at the
wall at each instant, averaging the result over time, and
divide it by the length of the outer circle (27R,). Let us
denote the result by F’. In order to obtain F we still have
to divide F’ by the number of outer wall sites per unit
length, i.e., 414/27R,, and multiply the result by the
width of the strip (R, —R,)/7, which is used in the
coarse-graining process. The reason is that the “velocity
at the wall” is actually averaged over the width of the
strip. We get

= 127TR2 (RZ_RI)
414 7

=3.85F" . (13)

Thus for p,=1.1 we get F=1.038 and B=10.98; for
ps =2.1 we get F=1.248 and B=6.68; and for p, =3.1 we
get F=1.016 and B=3.56.

This method of estimating the viscosity is in fact simi-
lar to that of calculating the stress tensor, but it is easier
to calculate the force acting on the wall than the momen-
tum transfer in a ring across a circular contour. It is evi-
dent that for sufficiently large circles this type of flow is
equivalent to planar Couette flow.

As seen from Table I all methods of calculating viscosi-
ty agree with each other for the particle site density
ps=1.1,2.1. In the case of p, =3.1 the results are not re-
liable because the velocity of the outer circle is in that
case very small (there are fewer sites at the wall which
contain up to two particles) and the signal-to-noise ratio
is small. Also, viscosities obtained for situations in which
the inner circle is rotating are substantially off the values
shown in Table I (e.g., v=0.41, 0.25, and 0.37 for

TABLE 1. Kinematic viscosity for the Poiseuille and planar and circular Couette flows for the three
densities considered. In all cases the estimated errors are +0.03. The data for the circular Couette flow
were obtained in the arrangement in which the outer circle rotates and the inner one is held fixed. The
fourth column is based on results obtained analytically in Ref. [1] within the lattice Boltzmann approxi-
mation. The values from Ref. [1] have been multiplied by 2/V/3. This extra factor compensates for an
ambiguity in relating momentum transfers resulting from the forcing rules to real forces and/or pres-
sure gradients. Results obtained in Ref. [13] are almost identical to those shown in the fourth column.

Poiseuille flow

Planar Couette flow

ps  Stress tensor  Velocity profile Ref. [1] Global Local Circular Couette flow
1.1 0.32 0.35 0.34 0.37 0.32 0.36

2.1 0.32 0.34 0.34 0.30 0.31 0.37

3.1 0.56 0.55 0.58 0.55 0.56
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ps=1.1, 2.1, and 3.1, respectively, when the two circles
counterrotate). We attribute this to the vortex flow pat-
terns discussed in Sec. IV.

It should be pointed out that the viscosity may also be
determined from cellular automata simulations of dynam-
ical approach to steady state. In the planar Couette
geometry this has been carried out by Hayot [29]. It
would be interesting to study such dynamical effects in
cylindrical geometries.

In this paper so far we have learned that the forcing
rules needed to induce a circular Couette flow in a Boole-
an lattice-gas system are possible to construct, but they
are rather cumbersome to use. More complex curved
flow geometries would need even more elaborate rules.
Boltzmann automata, on the other hand, can be forced to
flow at moving walls by acquiring a real number shift in
the state probabilities at the walls, usually without a
necessity to check if some conditions on the states are
satisfied or not. Thus in complicated geometries or in the
presence of position-dependent bulk forces the flows are
described by the Boltzmann algorithms more naturally
and these will be used in the next section.

B. Boltzmann automata

The viscosity for the Boltzmann automata can be ob-
tained in a similar way. We used the Poiseuille flow
(64 X 32 sites) and found v from the velocity profile and
from the stress tensor calculations. The two methods
agree within the statistical noise and the results are
shown in Fig. 5.

The value of v depends on n,. For the Galilean invari-
ant case of n,=18 and p=1 (i.e., p, =8) we get v=0.16.
For the same p but for ny=1 (i.e., p; =2.33) the value of
v is 0.19 (from the velocity profile; 0.20 from the stress

p=1/3

0.25 0.5
0

FIG. 5. Kinematic viscosity for the Boltzmann automata ob-
tained from studies of the Poiseuille flow. The figure shows the
dependence on p, the density per state for those values of p and
no which satisfy Eq. (3). This is v found in the Galilean invari-
ant situations. The solid line was obtained from studies of the
velocity profile in the Poiseuille flow and the dotted line from
the corresponding stress tensor analysis. The inset shows the
same quantity, for a fixed p= %, as a function of the number of
particles at rest n,. The Galilean invariant case is marked off by
a hexagon.

tensor), which is of the same order as the Boolean FHP II
value. Note, however, that the Boltzmann version of the
ny=1 automaton has collisions involving the rest parti-
cles defined differently than in the Boolean case and the
corresponding  viscosities should not agree. The
difference arises from the fact that in the Boltzmann
model collisions involving the rest particles have weights
proportional to the number of possible output
configurations [13]. This ensures that, in equilibrium, the
average p in each state at a site is equal. In the Boolean
FHP II model, on the other hand, collisions involving
rest particles are treated equivalently to other collisions.

The main part of Fig. 5 shows v for n, and p related by
the Galilean invariance condition (3) whereas the inset
shows the dependence on n, for a fixed p.

VI. CHAOTIC MIXING
IN JOURNAL-BEARING FLOWS

A study of chaotic mixing of fluids in two-dimensional
time-periodic flows serves as a useful model for the un-
derstanding of a variety of mixing processes and it pro-
vides a visual analog for chaos in area-preserving maps
[16-21].

We now focus on 2D mixing processes taking place in
flows confined between two eccentric circles [21,23,30].
The main geometrical parameters of this system are the
ratio of the radius of the inner circle to the radius of the
outer circle r =R;, /R, and the degree of eccentricity
(distance between the centers of the two circles d, nor-
malized by the radius of the outer circle) e=d /R .
Note that 0<r +e<1. At low Reynolds numbers the
streamlines are determined only be the ratio of angular
velocities of the inner and the outer circles Q;,/Q,.
Motivated by the setups of the Swanson-Ottino experi-
ments [23], we choose the following values of the parame-
ters: R;,/R.,.=+, d/R,,;=0.33, and Q,; /Q,,=—3.
Both the Reynolds number (Re=16.9) and the Strouhal
number are kept low.

We consider the Boltzmann automaton corresponding
to p=+ and n,=18 and we take R;,=10 and R, =30.
Our simulation are performed for two physical situations.

(a) The moving walls act one at a time. First, the inner
circle moves clockwise, for half of the period, and the
outer circle stays idle. In the second half of the period
the inner circle is idle, but the outer one moves counter-
clockwise. This is the situation encountered in most of
the chaotic flow experiments and is called discontinuous
time-periodic flow regime.

(b) The two moving walls act simultaneously. In the
first half of the period the inner circle moves clockwise
and the outer one moves counterclockwise. In the second
half, the directions of the wall motion are reversed. This
motion is called continuous time-periodic flow fashion.

In experiments [23] the discontinuous time-periodic
protocol [situation (a)] is usually employed, but here we
want to compare Poincaré sections and evolutions of
blobs of tracers between situations (a) and (b).

Figures 6-8 show the streamlines in the stationary
state in the absence of any wall oscillations. In Fig. 6 the
outer circle is moving counterclockwise and the inner one
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FIG. 6. Streamlines in the stationary state for journal-
bearing flow in the case of outer circle moving counterclockwise
with the inner one being idle. The Boltzmann automation with
no=18 and p=0.33 was used here.

stays at rest. In Fig. 7 the situation is reversed and the
inner circle is moving clockwise. Figure 8 shows the
streamlines in the stationary state for the case of outer
circle moving counterclockwise and the inner one clock-
wise. The lines in Figs. 6—8 show trajectories of a point-
like tracer particle placed at various locations of the sys-
tem. The trajectory of the tracer is determined by the ve-
locity field encountered and is calculated by an interpola-
tion method explained in Ref. [24]. The evolution has
been carried out for thousands of steps after reaching the
steady flow conditions. Under creeping flow conditions
the pattern of the streamlines is determined by the ratio
Q;,/Q,, The ratios corresponding to flows shown in
Figs. 6—8 are almost those studied by Ottino [20] in a hy-
drodynamic model and the similarity of the streamlines
to those found by him is very close.

We now consider the time-periodic flows. We have
found [24] that the inertial effects (slip time) of regaining
stationary state after changing direction of a flow are of

FIG. 7. Same as in Fig. 6 when the inner circle is moving
clockwise and the outer one stays idle.

“—

FIG. 8. Same as in Fig. 6 when the inner circle is moving
clockwise and the outer one is moving counterclockwise.

the order of 10 time steps, when ny=2. The larger n, we
are using here slows the dynamics down, but when we
deal with flows with long periods T of order of several
hundreds or several thousands steps, we can simplify the
simulations by working with ‘“photographs” of a station-
ary velocity field for each half-period instead of actually
evolving the cellular automaton system. The automaton
is used exclusively to generate the photographs. In
scheme (a), for instance, the first photograph has the ve-
locity field corresponding to Fig. 6 whereas the second
photograph has the velocity field as in Fig. 7. In order to
obtain a truly stationary velocity field we evolve the sys-
tem for 100000 time steps. This takes of order 20 h on
an IBM486 personal computer. The same number of
steps in the Boolean case would take about 9 h.

T=2304

T=9216

FIG. 9. Poincaré sections for type- 4 discontinuous flow for
four periods 144, 567, 2304, and 9216 as indicated.
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T=9216

T=2304

FIG. 10. Same as in Fig. 8, but for type-B continuous flow.

Poincaré sections show locations of tracer particles
every period and they visualize the workings of the mix-
ing process. The Poincaré sections shown in Figs. 9 and
10 were obtained by using 16 tracer particles and evolv-
ing their trajectories for 1000 periods. Figure 9 is for sit-
uation (a) and Fig. 10 for situation (b). The four values of
the periods considered were 144, 576, 2304, and 9216 as
indicated (the corresponding Strouhal numbers are 9.47,
2.37,0.59, and 0.15).

For small periods the flows are not chaotic or only very
weakly chaotic and form rolls. The (a)-type flow pro-
duces two roll-like structure, whereas the (b)-type flow
yields structures which can be thought of as originating
from six ““vortices.” This is reminiscent of the roll struc-
ture found in the square cavity flows [24], except that an
equivalent of situation (b) produced four rolls, not six. At
longer periods rolls cannot be identified and the flows be-
come chaotic. It should be pointed out that the chaotic
behavior found here does not originate from any spurious
effects due to the cellular automata method: the chaos is
observed experimentally and we have attempted to study
it within a cellular automaton model.

Finally, we can study mixing of particles arranged ini-
tially in some well-defined manner. Figure 11 shows
what happens to particles placed along a horizontal line
within first three periods in situations (a) and (b), respec-
tively. In both cases 7=9216. Unlike the square cavity
case the mixing in the (a) or (b) way is rather similar, but
(b) seems to be more effective.

Our results on the stretching plots and Poincaré sec-
tions are qualitatively similar to those found in experi-

(a)

T=9216

FIG. 11. Trajectories of particles initially located on a hor-
izontal straight line shown in (a). (b) and (d) show positions of
the dye particles after time 7" and 3T for situation 4. (d) and (e)
show the corresponding ‘“photographs” for situation B.

ments [21,23,30] They encourage further use of the
Boltzmann cellular automata in theoretical studies of
such problems. The technique of cellular automata has
the advantage of simplicity and computational speed.
However, for problems such as one under study, the non-
trivial geometry, the need for complex rules, and the long
computer runs needed to suppress the noise and obtain
an accurate average signal make the Boolean method less
competitive. The Boltzmann method saves on averaging,
yet may be computationally intensive since no lineariza-
tion approximation is being made. The Boltzmann
method, however, allows for a simple way of accounting
for a complicated geometry and makes an alternate viable
route of attacking complex hydrodynamic problems such
as chaotic mixing.
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